

Overview of the Financing Programme for JCM Model Projects

3th October 2019 (Ulaanbaatar in Mongolia)

Satoru TANGO Global Environment Centre Foundation (GEC)

- 1. Basic concept of the JCM and Financing Programme
- 2. Guideline for Project Proposal

Appendix:

- 8 Projects in Mongolia (2013 ~ 2019)
- 11 Projects in 2019 (First selection results)

Facilitating diffusion of advanced low-carbon or decarbonizing technologies, products, system, services and infrastructure as well as implementation of mitigation actions, and contributing to sustainable development of developing country.

Appropriately evaluating contributions from Japan to GHG emission reductions or removals in a quantitative manner and use them to achieve Japan's emission reduction target.

Contributing to the ultimate objective of the UNFCCC by facilitating global actions for GHG emission reductions or removals.

*measurement, reporting and verification

Basic concept of the JCM Model Projects (2) Global Environment Centre Foundation

JCM Financing Programme (FY2013-2019), as of Sep 3, 2019 Centre Foundation

Thailand: 31 projects OIMW Solar PV on Factory Rooftop* OIMW Solar PV on Factory Rooftop* OUpgrading Air-saving Loom* Ocentrifugal Chiller & Compressor* Ocentrifugal Chiller & Compressor* OCentrifugal Chiller in Tire Factory Oco-generation in Motorcycle Factory Oco-generation System OLON Exchange Membrane Electrolyzer Ochilled Water Supply System Ocentrifugal Chiller & Compressor
Objected Lighting to Sales Stores OTZPW Waste heat Recovery in Centert Plant OCo-generation System ORefrigerator and Evaporator OZAW Solar PV O3.4MW Solar PV* OHeat Recovery Heat Pump O5MW Floating Solar PV O30MW Solar PV OBioiner System in Rubber Belt Plant OAir-conditioning Control System OBiomass Co-generation System OEnergy Saving Equipment in Port OCo-generation System OEnergy Saving Equipment in Port O0.8MW Solar PV and Centrifugal Chiller A Introduction of Scheme for F-gas Recovery and Destruction O0.8MW Solar PV and Centrifugal Chiller
O37MW Solar PV and Melting Furnace OHeat Exchanger in Fiber Factory Bangladesh: 6 projects OModal Shift with Reefer Container OInverters for Raw Water Intake Pumps Collection Scheme and Dedicated System of F-gas OWaste to Energy Plant OHigh Efficiency Water Pumps2 OBiomass Boiler to Chemical Factory
Ocentrifugal Chiller OLoom at Weaving Factory* O315kW PV-diesel Hybrid System* OSOMW Solar PV Power Plant Ocentrifugal Chiller* High Efficiency Transmission Line Laos:4 projects Once-through Boiler and Fuel Switching OBLOCT Kenya:2 projects OElectorolyzer in Chlorine OMW Solar PV at Salt Factory
Production Plant* O38MW Solar PV Myanmar:7 projects Phillipines:11 projects OZO0kW Waste to Energy Plant O4MW Hydro Power Plant O4MW Hydro Power Plant OT00kW Waste to Energy Plant O4MW Hydro Power Plant O4MW Hydro Power Plant Once-through Boiler in Instant Noodle Factory O1.10MW Rice Hydro Power Generation O19MW Hydro Power Plant O18MW Rice Hydro Power Generation O18MW Solar PV OBiogas Power Generation and Fuel Conversion
ORefrigeration System in Logistics Center O8.8MW Waste Heat Recovery in Cement Plant OBrewing Systems and Biogas Boiler to Brewery Factory Palau:5 projects O370kW Solar PV for Commercial Facilities* OSE of the plane of th
Cambodia: 5 projects <u>OLED Street Lighting</u> <u>Oliverters for Distribution Pumps</u> Battambang Wastewater Treatment Project <u>OLED Street Lighting</u> <u>OLED Street Lighting</u> <u>Oliverters for Distribution Pumps</u> <u>OLED Street Lighting</u> <u>Oliverters for Distribution Pumps</u> <u>OLED Street Lighting</u> <u>Oliverters for Distribution Pumps</u> <u>OLED Street Lighting</u> <u></u>
Maldives: 2 projects Indonesia: 31 projects O186kW Solar Power on School Rooftop* Smart Micro-Grid System Charter of the sectory Centrifugal Chiller at Textile Factory* ORefrigerants to Cold Chain Industry** Obouble Bundle-type Heat Pump*
 Model Project in FY 2013 (7 projects in 3 countries) Model Project in FY 2014 (12 projects in 5 countries) ADB Project in FY 2014 (12 projects in 9 countries) Model Project in FY 2015 (31 projects in 9 countries) Model Project in FY 2016 (35 projects in 9 countries) Model Project in FY 2017 (19 projects in 7 countries) ADB Project in FY 2017 (19 projects in 1 country) Model Project in FY 2018 (24 projects in 1 country) Model Project in FY 2018 (24 projects in 1 country) ADB Project in FY 2018 (24 projects in 2 country) ADB Project in FY 2018 (24 projects in 2 country) ADB Project in FY 2018 (24 projects in 2 country) ADB Project in FY 2019 (11 projects in 2 country) ADB Project in FY 2019 (11 projects in 5 countries) ADB Project in FY 2019 (11 projects in 5 country) ADB Project in FY 2019 (11 projects in 5 country) ADB Project in FY 2019 (11 projects in 5 country) ADB Project in FY 2019 (11 projects in 5 country) ADB Project in FY 2019 (11 projects in 5 country) ADB Project in FY 2019 (11 projects in 5 country) ADB Project in FY 2019 (11 projects in 5 country) ADB Project in FY 2019 (11 projects in 5 country) ADB Project in FY 2019 (11 projects in 5 country) ADB Project in FY 2019 (11 projects in 5 country) ADB Project in FY 2019 (11 projects in 5 country) ADB Project in FY 2019 (11 projects in 5 country) ADB Project in FY 2019 (11 projects in 5 country) ADB Project in FY 2019 (11 projects in 5 country) ADB Project in FY 2019 (11 projects in 5 country) ADB Project in FY 2019 (11 projects in 5 country) ADB Project in FY 2019 (11 projects in 5 country) ADB Project in FY 2019 (11 projects in 5 country)
Projects with * have been registered as JCM projects (44 projects)

What kind of projects are supported by this financing programme?

Guideline

- Reduce energy-related CO2 emissions with leading low carbon technologies in partner countries
- Contribute to the sustainable development in partner countries.
- Reduction of GHG emissions achieved by the projects can be quantitatively calculated and verified.
- Facilities installed by the projects do not receive any other subsidy by the Government of Japan.

- (a) A representative participant of the model project shall be a Japanese entity of an international consortium.
- (b) A participant shall have capability for the implementation, such as technical capacity to appropriately implement the eligible project.
- (c) A participant shall have a financial basis to bear the costs necessary to appropriately implement the eligible project.
- (d) A participant shall have adequate management structures and handling capacity for accounting and other administrative work related to the eligible project;

Guideline

(e) A participant shall explain the contents, effect on GHG emission reductions, details of the cost, investment plan, etc. of the eligible project.

What kind of cost is covered & not covered by this programme? ✓ COVERED

- (a) Main construction work
- (b) Ancillary work
- (c) Machinery and appliances
- (d) Surveying and testing
- (e) Facilities/equipment (including monitoring equipment)
- (f) Administrative work; and

Guideline

(g) Other necessary costs approved by GEC

for Submitting

JCM model project proposal in FY2019

What is the criteria of cost-effectiveness?

JPY4,000/tCO2equivalent

Amount of financial support[JPY]

Emission reductions of GHG [tCO2equivalent/y] × legal durable years[y]

Legal durable years of the facilities is stipulated by the Japanese law, and are dependent on the industry classification.

JPY3,000/tCO2equivalent

In case the number of PV JCM Model Projects by each country is 5 or more. (Mongolia and Thailand)

Guideline

Budget	JPY9.9 billion (Approx. USD90million)	Financial support per project								
Executing Entity	International Consortium that consists of a Japanese entity and a JCM partner-country entity (ies)	From ¥50million to ¥2billion (approx.)								
Scope of Financing	Facilities, equipment, vehicles, etc. which reduce CO2 from fossil fuel combustion as well as construction cost for installing those facilities, etc.									
Eligible Projects	Start installation after the Contract of Finance is concluded and finish installation within 3 years.									
Maximum percentage of Financial Support	Maximum of 50% and reduce the percentage according to the number of already selected project(s) using a similar technology in each partner country. % Number of already selected project(s) using a similar technology in each partner country : none (0) = up to 50%, up to 3 (1-3) = up to 40%, more than 3 (>3) = up to 30%. The percentage of financial support will be determined by GEC.									
Cost-effectiveness	Cost-effectiveness of GHG emission reductions is expected to be JPY4,000/tCO2eq o % If the number of PV projects in a partner country is 5 or more, cost-effectiveness is expected to be JPY3,000/	or better. tCO2eq or better.								

Guideline

Categorization by Technology Type for JCM Model Projects Global Environment Centre Foundation

New Technolog	gies		Percentage of Financial S	upport :	White 0 project = Up to 50% Yellow 1-3 project(s) = Up to 40% C				Orange	ge more than 4 projects = Up to 30%											
Selected in EV2	018	ду	JCM Methodology	Mongolia	Bangladesh BD	Ethiopia	Kenya	Maldives	Viet Nam	Lao PDR	Indonesia	Costa Rica	Palau	Cambodia	Mexico	Saudi Arabia	Chile	Myanmar	Thailand	Philippine	Total
		stem	VN_AM006, ID_AM004	PIN	00	E1	KL	ITV	2	DA	1	CK	FVV	KII	PIA	JA	CL	1.11.1	1	FII	4
	Chillor	1	BD_AM001, VN_AM011, ID_AM002,		2				2		4	- 1		- 1					2		14
	Crimer		CR_AM002, TH_AM003, TH_AM005		2				5		7	1		1							14
	Refrigerator	1	ID_AM003, TH_AM008								1							2	4		7
	Absorption Chiller U	Jsing Waste									2								2		4
	Heat Guiding Industion T	in a Ala																		 	
	conditioning System	ype Air-	TH_AM006																1		1
	Double Bundle-type	Heat Pump	VN AM012, ID AM010						1		1								1	├ ──┦	3
	Fridge and Freezer Showcase		ID_AM008								1								1	 	2
	Boiler		MN AM002. ID AM015	1					1		2				1			2	1		8
				_							_									┞───┦	
	Water Heater Using	Waste Heat	CR_AM003									1									1
	Waste Heat Pacover	ry System																2	1		3
			VN_AM005, LA_AM003						4	1									—		5
Autoclave		1	ID_AM005								2								2		4
Autociave	hting	with	ID AM018 KH AM001								1			1							2
Multi offect Distillation System	em										1			1							2
multi-effect Distillation Syster		,	VN_AM013]				1												1
Teste ettere Martaltere Maralatere	pr		TH_AM002						1										1	└──┦	2
Injection Molaing Machine	em		ID 4M000								1								┝──┦	┝──┦	1
	Jace	15	VN AM010						1		1								┝──┤	├──┦	1
	Conditioning Contr	rol System							1										1	├ ──┦	2
	Freaquenter	r for Pump							1					1							2
	Loom		BD_AM003, ID_AM011, TH_AM004		1						2								1		4
	Old Corrugated Cart	tons	ID AM012								1										1 1
	Process										1								\square		
D'ALL DATE	Formin	ng Device	VN_AM009						1												1
Biogas Boller	n Chior	rine	SA_AM001													1			1		2
	In Mach	hines	VN AM014						1											┞───┦	1
	stry crane																		1		1
	Forklift																		1		1
	AD										1										1
	Multi-effect	on System													1						1
	Injection Modling Ma	acrim									1										1
			MN_AM003, BD_AM002, KE_AM002,																		1
	Solar Power Plant	1	MV_AM001, VN_AM007, LA_AM002,	6	2		2	1	1	2	2	1	4	2	2		1		a	4	30
	Solar rower riane		KH AM002, MX AM001, CL AM001,	Ŭ	2		2	-	-	-	-	-		-	-		1				1
			TH_AM001																		1
	Plant wi	vith Battery	ID_AM017								1						1				2
	ower P	Plant	KE_AM003								3									3	6
Reefer Container	Plant														1				<u> </u>		1
	er Plan	IL									1							1			3
CNG-Diesel Hybrid Bus																		1	<u> </u>	┞───┦	1
	renerat	tion	ET_AM003			1													1	├ ──┦	2
	Power Generation by	y Waste																			
3.Effective Use o	Heat Recovery	1	ID_AM001, TH_AM007								1							1	1		3
Energy	Gas Co-generation	1	ID_AM016, TH_AM009								2								3	├ ──┦	5
	Waste-to-Energy Plant	ant I	MM_AM001															1		├ ── 	1
4. Waste Handling	Power Generation by	y Methane																	$ \square$		
and Disposal	Approximation Recovery Digital Tachograph System CNG-Diesel Hybrid Bus														1						1
			VN_AM001						1										\square^{\dagger}		_1
5. Transportation											1										1
	Reefer Container								1										\vdash	\square	1
Total	Number of technolog	gy: 45	No. of Methodology : 53	7	5	1	2	1	21	3	33	3	4	5	6	1	2	10	38	8	150

Infrastructure through JCM

Global Environment Centre Foundation

Palau / Pacific Consultants Co., Ltd. Solar Power Plants for Commercial Facilities Indonesia / Toyota Tsusho Corporation Double-Bundle type Heat Pump Indonesia / Hokusan Co., Ltd. CNG-Diesel Equipment to Public Bus Thailand / Yokohama Port Corporation Energy Efficient Equipment to Bangkok Port

High Efficiency LED Lighting

Indonesia / Environmental Management and Technology Center Energy Saving in Industrial Wastewater Treatment System Myanmar / Kirin Holdings Company, Limited, Energy Saving Brewing Systems 11 Thailand / TSB Co., Ltd. Floating Solar Power System Mexico / NTT DATA INSTITUTE OF MANAGEMENT CONSULTING, Inc. Power Generation with Methane Gas Recovery System

05

3

Accelerating International Promotion of Infrastructure through JCM

Along with the Overseas Development Strategy (Environment) compiled by Cabinet Office, Government of Japan in June 2018, the JCM model project aims to contribute to global GHG emission reductions, through the diffusion of leading low carbon or decarbonizing technologies.

POWER GENERATION AND SUPPLY

URBAN INFRASTRUCTURE

1 Viet Nam / Yuko Keiso Co., Ltd. Amorphous High Efficiency Transformers in power grid 🔁 Viet Nam / Yokohama Water Co., Ltd. High Efficiency Water Pumps 3 Myanmar / JFE Engineering Corporation Waste to Energy Plant in Yangon City Myanmar / Fujita Corporation Rice Husk Power Generation

06

Баярлалаа 🚽

Global Environment Centre Foundation(GEC) Tokyo Office

3rd Floor, Hongo Ozeki Bidg 3-19-4, Hongo, Bunkyo-ku, Tokyo 113-0033, JAPAN Phone : +81-3-6801-8773 / FAX : +81-3-6801-8861 E-mail :jcm-info@gec.jp URL : http://gec.jp/

Year	Partner Country	Entity	Project Title	Sector	Expected GHG Emission Reductions (tCO2/y)
2019	Mongolia	Saisan Co.,Ltd.	Fuel Conversion by Introduction of LPG Boilers to Beverage Factory	Energy Efficiency	5,781
2018	Mongolia	Sharp Energy Solutions Corporation	21MW Solar Power Project in Bayanchandmani	Renewable Energy	27,008
2017	Mongolia	Sharp Energy Solutions Corporation	Introduction of 20MW Solar Power System in Darkhan City	Renewable Energy	22,927
2017	Mongolia	Sharp Energy Solutions Corporation	Introduction of 15MW Solar Power System near New Airport	Renewable Energy	18,438
2016	Mongolia	Farmdo Co., Ltd.	Installation of 8.3MW Solar Power Plant in Ulaanbaatar suburb Farm	Renewable Energy	9,585
2015	Mongolia	Farmdo Co., Ltd.	Installation of 2.1MW Solar Power Plant for Power Supply in Ulaanbaatar Suburb	Renewable Energy	2,424
2015	Mongolia	Sharp Energy Solutions Corporation	10MW Solar Power Project in Darkhan City	Renewable Energy	11,221
2013	Mongolia	Suuri-Keikaku Co., Ltd.	Upgrading and Installation of Centralized Control System of High- efficiency Heat Only Boiler (HOB)	Energy Efficiency	206

Partner Country: Mongolia

Fuel Conversion by Introduction of LPG Boilers to Beverage Factory

PP (Japan): Saisan Co., Ltd., PP (Mongolia): MCS International LLC, MCS Coca Cola LLC

Outline of GHG Mitigation Activity

LPG boilers are introduced for the purpose of mitigation of GHG emissions as well as air pollution in Ulaanbaatar City.

By introducing the most efficient and newest model of LPG once-through boilers and vacuum type water heaters, the efficiency of the system is improved with less fuel consumption.

Expected GHG Emission Reductions

<u>5,781 tCO₂/year</u>

=Reference CO_2 emissions (Ry)[tCO₂/y] -Project CO_2 emissions (Py) [tCO₂/y] =12,692 [tCO₂/y] - 6,911 [tCO₂/y]

Ry=Reference fuel consumption (RQfy) [t/y] × Fuel emission factor (furf) [tCO₂/t] + Reference electricity consumption (RQey) [MWh/y] × Grid emission factor (gef) [tCO₂/MWh] Py=Project fuel consumption (PQfy) [t/y] × Fuel emission factor (fupf) [tCO₂/t] +Project electricity consumption (PQey) [MWh/] × (gef) [tCO₂/MWh]

Sites of Project

21MW Solar Power Project in Bayanchandmani

PP (Japan): Sharp Energy Solutions Corporation, PP (Mongolia): Solar Energy Chandmani LLC

Outline of GHG Mitigation Activity

Sharp Energy Solutions Corporation and Solar Energy Chandmani LLC introduce a 21MWac ground-mount solar PV system in Bayanchandmani village, Mongolia for the sale of power.

This project contributes Mongolian energy policy to increase renewables up to 30% by 2030.

Expected GHG Emission Reductions Expected GHG Emission Reductions Sites of Project Map Data @2018Google (Reference CO2 emission) [tCO2/year] - (Project CO2 Emission) [tCO2/year] - 0 [MWh/year])) × Emission Factor [tCO2/MWh]

Partner Country: Mongolia

Introduction of 20MW Solar Power System in Darkhan City PP (Japan): Sharp Corporation, PP (Mongolia): Darkhan Selenge Electricity Distribution Network JSC

Outline of GHG Mitigation Activity

Sharp and Darkhan Selenge Electricity Distribution Network JSC construct PV plant in Darkhan City in Mongolia.

This project contributes Mongolian energy policy to increase renewables up to 30% by 2030.

Expected GHG Emission Reductions

22,927 t-CO2 /year

- = (Reference CO₂ emissions) [tCO₂/year]
 - (Project CO₂ Emission) [tCO₂/year]
- = ((Reference Power consumption) [MWh/year]
 - 0 [MWh/year])) × Emission Factor [tCO₂/MWh]

Partner Country: Mongolia

Introduction of 15MW Solar Power System near New Airport

PP (Japan): Sharp Corporation , PP (Mongolia): Tenuun Gerel Construction LLC

Outline of GHG Mitigation Activity

Sharp and Tenuun Gerel Construction LLC construct PV plant in Khushig khundii near New airport in Mongolia.

This project contributes to Mongolian energy policy to increase renewables up to 30% by 2030.

Expected GHG Emission Reductions

18,438 t-CO2 /year

- = (Reference CO_2 emissions) [tCO₂/year]
 - (Project CO₂ Emission) [tCO₂/year]
- = ((Reference Power consumption) [MWh/year]
 - 0 [MWh/year])) × Emission Factor [tCO₂/MWh]

Partner Country: Mongolia

Introduction of 20MW Solar Power System in Darkhan City PP (Japan): Sharp Corporation, PP (Mongolia): Darkhan Selenge Electricity Distribution Network JSC

Outline of GHG Mitigation Activity

Sharp and Darkhan Selenge Electricity Distribution Network JSC construct PV plant in Darkhan City in Mongolia.

This project contributes Mongolian energy policy to increase renewables up to 30% by 2030.

Expected GHG Emission Reductions

22,927 t-CO2 /year

- = (Reference CO₂ emissions) [tCO₂/year]
 - (Project CO₂ Emission) [tCO₂/year]
- = ((Reference Power consumption) [MWh/year]
 - 0 [MWh/year])) × Emission Factor [tCO₂/MWh]

Installation of 2.1MW Solar Power Plant for Power Supply in Ulaanbaatar Suburb

PP (Japan): Farmdo Co., Ltd. / PP (Mongolia): Everyday Farm LLC, Bridge LLC

Outline of GHG Mitigation Activity

The purpose of this project is to reduce CO₂ emission, mitigate air pollution and stabilize power supply in Mongolia by installing 2.1MW scale solar power plants in the suburbs of Ulaanbaatar. This power plants can replace some part of power generation by coal-fired thermal power. Moreover, lots of achievements in daily life, mitigating air pollution, resolving power shortage, food supplying, etc., can be expected by synergy of agricultural and solar power generation technology.

Expected GHG Emission Reductions

Site of JCM Model Project

2,424 tCO₂/year

- =Project Electricity Generation(EG) x Emission Factor (EF)
- =Power Generation Capacity[kW] x Annual Operating Rate[%] x 24hours x 365days x EF

Project site situated in the farm Everyday Farm owns is located 37km northwest of Ulaanbaatar city center.

10MW Solar Power Project in Darkhan City

PP (Japan): Sharp Corporation / PP (Mongolia): Solar Power International LLC (SPI)

Outline of GHG Mitigation Activity

The project aims to reduce CO₂ emissions by constructing a 10MW Solar Power Generation Plant beside the 110kV substation in Darkhan City, which locates approximately 230 km North of the capital city Ulaanbaatar, and supplying the generated electricity through the power transmission network.

The power plant employs crystalline solar modules of maximum output of 310W per panel and module conversion efficiency of 15.9%. Approximately 32,000 numbers (72 series) of these modules and peripheral systems are installed on a land of 36 ha.

Expected GHG Emission Reductions Sites of JCM Model Project

11,221tCO₂/year

CO₂ emission reduction = PV generation (a) × Reference emission factor (b) = 14,079 MWh/year × 0.797 tCO₂/MWh

Energy Saving for Air-conditioning and Process Cooling at Textile Factory

PP(Japan) :Suuri-Keikaku / PP(Mongolia) :Anu-Service

Outline of GHG Mitigation Activity

1. This JCM model project consists of two model sites: Bornuur sum in a rural area and the 118th School in Ulaanbaatar City.

The Bornuur sum project includes the installation of heat only boilers (HOBs) as well as pipe laying work, electrical construction and boiler building construction. This project alters the current heat supply system in Bornuur sum of individual building-based heating, under which low efficiency HOBs and stoves are used. The centralized control system of high-efficiency HOBs is installed in this project

2. The other project is the replacement of low-efficiency, old-type boilers with the latest high-efficiency model boilers at the 118th School in Ulaanbaatar City. This project also leads to the reduction of coal consumption to mitigate CO_2 emissions as well as air pollutants.

Expected GHG Emission Reductions Sites of JCM Model Project

298 tCO2/year

Results of first selection. Second selection is now under evaluating.

Year	Partner Country	Entity	Project Title	Sector	Expected GHG Emission Reductions(tCO2/y)
2019	Mongolia	Saisan Co.,Ltd.	Fuel Conversion by Introduction of LPG Boilers to Beverage Factory	Energy Efficiency	5,781
2019	Thailand	Toyota Motor Corporation	Introduction of 37 MW Solar Power System and High Efficiency Melting Furnace in Vehicle & Engine Factory	Energy Efficiency Renewable Energy	19,483
2019	Thailand	NIPPON STEEL ENGINEERING CO., LTD.	Efficiency Improvement of Co-generation System by Installation of Heat Exchanger in Fiber Factory	Energy Efficiency	359
2019	Philippines	ITOCHU Corporation	Biogas Power Generation and Fuel Conversion Project in Pineapple Canneries	Renewable Energy	52,156
2019	Philippines	Tokyo Century Corporation	18MW Solar Power Project in Collaboration with Power-supply Company	Renewable Energy	11,743
2019	Philippines	Voith Fuji Hydro K.K.	19 MW Mini Hydro Power Plant Project in Isabela Province	Renewable Energy	46,836
2019	Vietnam	DAIICHI JITSUGYO CO., LTD.	Introduction of Biomass Boiler to Chemical Factory	Renewable Energy	16,882
2019	Vietnam	Yokohama Water Co., Ltd.	Energy Saving by Introduction of High Efficiency Water Pumps in Hue City	Energy Efficiency	4,060
2019	Vietnam	Hitachi Zosen Corporation	Waste to Energy Project in Hanoi City	Waste Handling and Disposal	119,870
2019	Mexico	Sharp Energy Solutions Corporation	30MW Solar Power Project in La Paz city	Renewable Energy	36,724
2019	Palau	Sharp Energy Solutions Corporation	Introduction of 1MW Solar Power System on Supermarket Rooftop	Renewable Energy	842

Partner Country: Mongolia

Fuel Conversion by Introduction of LPG Boilers to Beverage Factory

PP (Japan): Saisan Co., Ltd., PP (Mongolia): MCS International LLC, MCS Coca Cola LLC

Outline of GHG Mitigation Activity

LPG boilers are introduced for the purpose of mitigation of GHG emissions as well as air pollution in Ulaanbaatar City.

By introducing the most efficient and newest model of LPG once-through boilers and vacuum type water heaters, the efficiency of the system is improved with less fuel consumption.

Expected GHG Emission Reductions

<u>5,781 tCO₂/year</u>

=Reference CO_2 emissions (Ry)[tCO₂/y] -Project CO_2 emissions (Py) [tCO₂/y] =12,692 [tCO₂/y] - 6,911 [tCO₂/y]

Ry=Reference fuel consumption (RQfy) [t/y] × Fuel emission factor (furf) [tCO₂/t] + Reference electricity consumption (RQey) [MWh/y] × Grid emission factor (gef) [tCO₂/MWh] Py=Project fuel consumption (PQfy) [t/y] × Fuel emission factor (fupf) [tCO₂/t] +Project electricity consumption (PQey) [MWh/] × (gef) [tCO₂/MWh]

Sites of Project

Partner Country: Thailand

Introduction of 37 MW Solar Power System and High Efficiency Melting Furnace in Vehicle & Engine Factory PP(Japan) Toyota Motor Corporation, PP(Thailand) Toyota Motor Thailand Co., Ltd., Siam Toyota Manufacturing co., Ltd., Toyota Daihatsu Engineering & Manufacturing Co., Ltd.

Outline of GHG Mitigation Activity

This project aims the reduction of CO₂ emission by installing 37 MW solar power system on the rooftop of the vehicle factory of Toyota Motor Thailand Co., Ltd. (TMT) located in Samutprakarn & Chachoengsao and engine factory of Siam Toyota Manufacturing co., Ltd. (STM) located in Chonburi in eastern Bangkok. Electricity generated by solar power system is consumed in-house and replaces part of grid electricity consumption.

CO₂ emissions are also reduced by replacing the existing melting furnace in STM with a high efficient medium-frequency induction melting furnace.

Sites of Project Expected GHG Emission Reductions <u>19,483 tCO₂/year</u> Suvarnabhumi Solar system: 16,858 tCO₂/year International Airport = ((Reference Power Consumption) [MWh/year] 65km - 0 [MWh/year]) × Emission Factor [tCO₂/MWh] (b) (a) 30ki (c) Thailand High efficiency melting furnace: 2,625 tCO₂/year TMT Samrong (a) = (Reference CO₂ Emissions) [tCO₂/year] TMT Gateway (b) - (Project CO₂ Emissions) [tCO₂/year] (c) TMT Banpho STM (d) Map data ©2018 Google

Efficiency Improvement of Co-generation System by Installation of Heat Exchanger in Fiber Factory PP (Japan): Nippon Steel Engineering Co., Ltd., PP (Thailand): NS-OG Energy Solutions (Thailand) Ltd.

Outline of GHG Mitigation Activity

This project aims to efficiently utilize unused thermal energy of the co-generation system to heat boiler feed water. A heat exchanger is additionally installed to the existing cogeneration system which is composed of 7MW gas turbine and heat recovery steam generator equipped with duct burner.

Natural gas fuel used for duct burner is reduced by approx. 4%, by increasing the temperature of boiler feed water by approx. 20 degrees Celsius.

Expected GHG Emission Reductions

359tCO₂/year

GHG Emission Reductions = Reference CO_2 Emission - Project CO_2 Emission

Reference CO_2 Emission = [(BFW* temp. after heat recovery)-(BFW temp. before heat recovery)] × (BFW amount) x (Specific heat of water) / (Boiler efficiency) x (CO_2 emission coefficient of fuel)

Project CO_2 Emission = 0

Project site

- Project site is located in Samutprakan province, adjacent to Bangkok.
- Project site is located 30 km south from Suvarnabhumi International Airport.

*BFW: Boiler Feed Water

Partner Country: Philippines

Biogas Power Generation and Fuel Conversion Project in Pineapple Canneries

PP (Japan): ITOCHU Corporation PP (Philippines): METPower Venture Partners Holdings, Inc.; Surallah Biogas Ventures Corporation

Outline of GHG Mitigation Activity

In this project, biogas derived from pineapple residue is utilized as fuel for gas engines and boilers to generate power and steam at the two pineapple canning factories (Surallah and Polomolok) of Dole Philippines, Inc.

This project aims to produce renewable energy by utilizing the pineapple waste which has been discarded. It contributes to reducing greenhouse gases emissions as well as lowering electricity cost for Dole Philippines, Inc.

Partner Country: Philippines

18MW Solar Power Project in Collaboration with Power-supply Company

PP (Japan): Tokyo Century Corporation , PP (Philippines): MSpectrum, Inc.

Outline of GHG Mitigation Activity

This project introduces 18MW Solar System in collaboration with Power-supply company to its clients' rooftops of shopping malls and factories.

Reduction of GHG emission is made by replacing a portion of conventional fossil fuel electricity to renewable energy.

Replacing to renewable energy from conventional electricity

19 MW Mini Hydro Power Plant Project in Isabela Province

PP (Japan): Voith Fuji Hydro K.K., PP (Philippines): Isabela Power Corporation

Outline of GHG Mitigation Activity

This project introduces turbine, generator, control system and auxiliary equipment at IPC1(19MW) hydro power plant located in Pinacauan de Ilaguen river, Isabela Province, Philippine. Machines can keep high efficiency even in variable head and variable loading condition, by adopting Kaplan turbine provided by Voith Hydro with the abundant experiences and latest technologies. This project is expected to have 95GWh generation capacity annually.

<Kaplan Turbine to be installed>

Introduction of Biomass Boiler to Chemical Factory

PP (Japan): Daiichi Jitsugvo Co., Ltd., PP (Vietnam): THUAN HAI CORPORATION

Outline of GHG Mitigation Activity

Daiichi Jitsuqyo Co., Ltd. and THUAN HAI CORPORATION jointly introduce biomass (Rice husk) -fueled steam boilers to supply steam to a chemical factory located in Phu My 3 Specialized Industrial Park in Ba Ria Vung Tau Province.

The project contributes to the achievement of the country's Vision by 2030 and Green Growth Strategy through achieving decarbonization by introducing biomassfueled steam boilers instead of fossil fuelfired boilers.

<u>16,882 tCO₂ /year</u>

- = Reference CO_2 emission Project CO_2 emission
- •

Partner Country: Vietnam

Energy Saving by Introduction of High Efficiency Water Pumps in Hue City

PP (Japan): Yokohama Water Co., Ltd. , PP (Vietnam): THUA THIEN HUE WATER SUPPLY JOINT STOCK COMPANY

Outline of GHG Mitigation Activity

High efficiency water pumps with inverter control are installed in a new water treatment plant and two existing water treatment plants owned by THUA THIEN HUE WATER SUPPLY JOINT STOCK COMPANY (HueWACO).

To perform with high efficiency, the pumps are customized to specific conditions and requirements of the recipient plants.

Moreover, highly efficient operation is possible by adjusting the rotational speed of the motor according to the change in flow rate using an inverter.

Sites of Project **Expected GHG Emission Reductions** 4,060 tCO₂/year QUIA 0 Tu Ha WTP = [(Reference Power Consumptions) – (Project ラオス Phong Thu WT Power Consumptions)] x Emission Factor (EF) Laos ベトナム カンボジア Van Nien 1&2 ーチミン to Chí Minh Map data © 2019 Google

Partner Country: Vietnam

 Waste to Energy Project in Hanoi City
 PP (Japan):Hitachi Zosen Corporation

 PP (Vietnam): (SPC)T&T – HITZ ENVIRONMENT & ENERGY COMPANY LIMITED / T&T Group Joint Stock Company

Outline of GHG Mitigation Activity

The objective of this project is to build and operate Waste to Energy plant for municipal solid waste from Hanoi City in the Xuan Son Waste treatment area in the northwestern part of Hanoi, Vietnam. Hitachi Zosen and T&T Group established SPC, which is responsible for the implementation of this project.

Under the contract with the Hanoi People's Committee, 1,000tons per day of municipal solid waste generated from Hanoi city is incinerated at this plant. The waste heat will be used for power generation. Generated power will be used for internal consumption and the rest of power will be supplied to the state-owned power company EVN.

As a result, it reduces fossil fuel consumption and CH4 emissions from landfill disposal.

Expected GHG Emission Reductions

119,870tCO2eq/year

=(Reference GHG Emissions for 15 years -Project GHG Emissions for 15 years) / 15 years

=(3,393,355tCO₂eq - 1,595,288tCO₂eq) /15 years Xuan Son Waste treatment area, Ba Vi district,

Sites of Project

Hanoi (About 80km west from Noi Bai Airport)

Total area of the site is 4.06 ha.

Map Data ©2019 Google

30MW Solar Power Project in La Paz city

PP (Japan): Sharp Energy Solutions Corporation , PP (Mexico): Prana Power SAPI de CV, Saferay Solar SAPI de CV

Outline of GHG Mitigation Activity

A 30MW ground-mount solar PV system is installed in Baja California Sur, Mexico, to sell power through the grid. To maximize the power generation, solar trackers are used.

This project contributes to the achievement of Mexico's policy for a Clean Energy ratio target of 35% by 2024.

Expected GHG Emission Reductions

<u>36,724 tCO₂/year</u>

- = (Reference CO₂ emissions) [tCO₂/year]
 - (Project CO₂ emissions) [tCO₂/year]
- = ((Reference power consumption) [MWh/year]
 0 [MWh/year]) × Emission factor [tCO₂/MWh]

Palau/ Introduction of 1MW Solar Power System on Supermarket Rooftop

PP (Japan): Sharp Energy Solutions Corporation, PP (Palau): Surangel & Sons Company

Outline of GHG Mitigation Activity

1MW solar power system is installed on the rooftop of a new supermarket to be built in Airai State, Republic of Palau, for selfconsumption purposes. This is the first introduction of a mega solar system in Palau.

This project contributes to the achievement of Palau's policy for a renewable energy ratio target of 45% in 2025.

Expected GHG Emission Reductions 842 tCO₂/year (Reference CO₂ Emissions) [tCO₂/year] (Project CO₂ Emissions) [tCO₂/year] ((Reference Power Consumption) [MWh/year] 0 [MWh/year]) × Emission Factor [tCO₂/MWh]